
Centrale Maths 2 MP 2016
Questions du sujet 1. I.A.1) Montrer que $f$ est définie et continue sur $[0, +\infty[$ et de classe $\mathcal{C}^2$ sur...
Questions du sujet 1. I.A.1) Montrer que $f$ est définie et continue sur $[0, +\infty[$ et de classe $\mathcal{C}^2$ sur...
Questions du sujet 1. En observant que $V(f)$ et $-V^*(f)$ sont des primitives de $f$, montrer que pour tous $f,...
Questions du sujet 1. Montrer que la matrice $H_n$ est symétrique réelle et définie positive. On pourra s’aider du calcul...
Questions du sujet 1. I.A.1) Quel est le domaine de définition $\mathcal{D}$ de la fonction $\Gamma$~? 2. I.A.2) Pour tout...
Questions du sujet 1. I.A – Soit $k$ et $n$ deux entiers strictement positifs. Montrer qu’il n’existe qu’un nombre fini...
Questions du sujet 1. I.A.1)\newline a) Étudier les variations de $\varphi$.\newline b) Tracer la représentation graphique de $\varphi$.\newline c) Montrer...
Questions du sujet 1. Justifier l’existence de $R_n(x)$. Que vaut la somme $T_n(x) + R_n(x)$ ? 2. En appliquant la...
Questions du sujet
Questions du sujet 1. Déterminer dans le quart de plan $x \geq 0, y \leq 0$, une équation polaire de...
Questions du sujet 1. Déterminer dans le quart de plan $x \geq 0, y \leq 0$, une équation polaire de...