
Mines Maths 2 PC 2013
Questions du sujet 1. Déterminer les coefficients de Fourier de $H_r$ et $H_r$ en fonction de $r$ et des $a_k$.}...
Questions du sujet 1. Déterminer les coefficients de Fourier de $H_r$ et $H_r$ en fonction de $r$ et des $a_k$.}...
Questions du sujet 1. I.A.1) Justifier que $\mathcal{X}_n$ est un ensemble fini et déterminer son cardinal. 2. I.A.2) Démontrer que...
Questions du sujet 1. I.A.1) Justifier que $\theta$ et $R$ sont bien définies. 2. I.A.2) Lorsque $z$ vaut successivement $z_1...
Questions du sujet 1. I.A – Quelle inclusion existe-t-il entre les ensembles $E$ et $E_0$? 2. I.B – Montrer que...
Questions du sujet 1. I.A.1) a) Montrer que pour tout $(x, y) \in \Omega$, l’ouvert $\Omega$ contient un sous-ensemble de...
Questions du sujet 1. I.A.1) La matrice $\Delta_{p+1}$ appartient-elle à l’ensemble $O(1, p)$ ? à l’ensemble $O^+(1, p)$ ? 2....
Questions du sujet 1. I.A – Démontrer que les valeurs propres réelles de $A$ sont dans $R(A)$. 2. I.B.1) Démontrer...
Questions du sujet 1. Soient $t_1$ et $t_2$ appartenant à \mathcal{S}_n, \text{ démontrer que } t_1 + t_2 \in \mathcal{S}_n.$}...
Questions du sujet 1. Soient $A$ et $B \in \mathcal{M}_n$, montrer que $\mathrm{tr} (AB) = \mathrm{tr} (BA)$. 2. Soit $T$...
Questions du sujet 1. Démontrer qu’une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est orthodiagonalisable si et seulement si elle est symétrique. 2....