Aller au contenu

Étude d’une application linéaire et de ses sous-espaces propres

Soit $f : \mathbb{C}_n[X] \to \mathbb{C}_n[X]$ définie par
$$
f(P) = (X^2 + X) P(1) + (X^2 – X) P(-1),
$$
où $f$ est un endomorphisme de $\mathbb{C}_n[X]$.

  1. Déterminer le noyau et l’image de $f$.
  2. Trouver les valeurs propres et les vecteurs propres de $f$. L’endomorphisme $f$ est-il diagonalisable ?
Indication

Accès immédiat aux corrigés

Débloque tous les corrigés des écrits et oraux et optimise ta préparation aux concours.

Débloquer l’accès 🔓
Déjà un compte ? Connectes toi ici
Correction

Accès immédiat aux corrigés

Débloque tous les corrigés des écrits et oraux et optimise ta préparation aux concours.

Débloquer l’accès 🔓
Déjà un compte ? Connectes toi ici
Mines Ponts RéductionSignaler une erreur