Ce rapport de jury de la session 2016 du concours Mines Ponts traite des épreuves écrites et orales, pour les filières MP, PSI et PC.
Source : Concours Mines Ponts
Corrigés des écrits du concours Mines Ponts 2016
Fais une recherche pour trouver un corrigé spécifique
Corrigé : Mines Ponts MP 2016 Chimie corrigé
Corrigé de l’épreuve Mines Ponts MP Chimie 2016
[corriges_auto]
[signal_corrige texte="Signaler une erreur sur ce corrigé"]
Énoncé de l’épreuve Mines Ponts MP Chimie 2016
[enonce_auto]
:
Rapport de jury de Mines Ponts MP 2016 : Chimie
Indications
Exercices corrigés posés aux oraux du concours Mines Ponts
Exercice : Étude d’une application linéaire et de ses sous-espaces propres
Soit $f : \mathbb{C}_n[X] \to \mathbb{C}_n[X]$ définie par
$$
f(P) = (X^2 + X) P(1) + (X^2 – X) P(-1),
$$
où $f$ est un endomorphisme de $\mathbb{C}_n[X]$.
- Déterminer le noyau et l’image de $f$.
- Trouver les valeurs propres et les vecteurs propres de $f$. L’endomorphisme $f$ est-il diagonalisable ?
Indication
Accès immédiat aux corrigés
Débloque tous les corrigés des écrits et oraux et optimise ta préparation aux concours.
Débloquer l’accès 🔓Correction
Accès immédiat aux corrigés
Débloque tous les corrigés des écrits et oraux et optimise ta préparation aux concours.
Débloquer l’accès 🔓Exercice : Équivalent d’une suite définie par une relation de récurrence.
Soit $\left(x_n\right)_{n \geqslant 0}$ définie par : $x_0=1$ et $\forall n \in \mathbb{N}, x_{n+1}=x_n+\frac{1}{x_n}$. Donner un équivalent de $x_n$ quand $n \rightarrow+\infty$.
Indication
Accès immédiat aux corrigés
Débloque tous les corrigés des écrits et oraux et optimise ta préparation aux concours.
Débloquer l’accès 🔓Correction
Accès immédiat aux corrigés
Débloque tous les corrigés des écrits et oraux et optimise ta préparation aux concours.
Débloquer l’accès 🔓Exercice : Nature d’une série liée à un rapport
On suppose que la série de terme général $a_n > 0$ est divergente. Soit, pour tout entier $n$, $S_n = a_0 + \cdots + a_n$ et $b_n = \frac{a_{n+1}}{S_n}$.
Déterminer la nature de la série de terme général $b_n$.
Indication
Accès immédiat aux corrigés
Débloque tous les corrigés des écrits et oraux et optimise ta préparation aux concours.
Débloquer l’accès 🔓Correction
Accès immédiat aux corrigés
Débloque tous les corrigés des écrits et oraux et optimise ta préparation aux concours.
Débloquer l’accès 🔓Exercice : Nombre de sous-ensembles entre deux ensembles
Soient \(A\) et \(B\) deux parties d’un ensemble \(E\). Déterminer le nombre de parties \(X \subset E\) telles que \(A \subset X \subset B\).
Indication
Accès immédiat aux corrigés
Débloque tous les corrigés des écrits et oraux et optimise ta préparation aux concours.
Débloquer l’accès 🔓Correction
Accès immédiat aux corrigés
Débloque tous les corrigés des écrits et oraux et optimise ta préparation aux concours.
Débloquer l’accès 🔓Exercice : Étude d’une fonction vérifiant f(xy)=f(x)+f(y)
Soit une fonction continue $f:] 0 ;+\infty[\rightarrow \mathbb{R}$ telle que $\forall(x, y) \in] 0 ;+\infty\left[{ }^2, f(x y)=f(x)+f(y)\right.$
a. Calculer $f(1)$. Pour $x \in] 0 ;+\infty\left[\right.$, comparer $f(x)$ et $f\left(\frac{1}{x}\right)$.
b. Montrer que $\forall x \in] 0 ;+\infty\left[, f(x)=\frac{1}{x} \int_x^{2 x} f(t) d t-\int_1^2 f(t) d t\right.$.
c. Montrer que f est dérivable sur $] 0 ;+\infty[$ et en déduire f .
Correction
Accès immédiat aux corrigés
Débloque tous les corrigés des écrits et oraux et optimise ta préparation aux concours.
Débloquer l’accès 🔓Exercice : Existence d’un lambda qui assure la convergence de l’intégrale.
a) Montrer qu’il existe un unique $\lambda \in \mathbb{R}$ tel que $\int_1^{+\infty} \frac{\lambda – \sin(t)}{t} \, dt$ converge.
Considérons $T > 0$ et soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue et $T$-périodique.
b) Montrer qu’il existe un unique $\lambda \in \mathbb{R}$ tel que $\int_1^{+\infty} \frac{\lambda – f(t)}{t} \, dt$ converge.
Correction
Accès immédiat aux corrigés
Débloque tous les corrigés des écrits et oraux et optimise ta préparation aux concours.
Débloquer l’accès 🔓