
Centrale Maths 2 MP 2018
Questions du sujet 1. Montrer que $\mathcal{H}(U)$ est un sous-espace vectoriel de $\mathcal{C}^2(U, \mathbb{R})$. 2. Soit $f \in \mathcal{H}(U)$. Montrer...
Questions du sujet 1. Montrer que $\mathcal{H}(U)$ est un sous-espace vectoriel de $\mathcal{C}^2(U, \mathbb{R})$. 2. Soit $f \in \mathcal{H}(U)$. Montrer...
Questions du sujet 1. Justifier que pour tout $f \in L$, $\hat{f}$ est bien définie et continue sur $\mathbb{R}$.} 2....
Questions du sujet 1. I.A.1) Justifier que $\theta$ et $R$ sont bien définies. 2. I.A.2) Lorsque $z$ vaut successivement $z_1...
Questions du sujet 1. Justifier que $\varphi$ appartient à $E_{cpm}$ et calculer sa transformée de Fourier $\mathcal{F}(\varphi)$. 2. I.B.1) Justifier...