
Mines Maths 1 MP 2019
Questions du sujet 1. Justifier que la série entière $\sum_{n \geq 1} \frac{(pn)^r}{(pn)!} z^n$ a pour rayon de convergence $+\infty$....
Questions du sujet 1. Justifier que la série entière $\sum_{n \geq 1} \frac{(pn)^r}{(pn)!} z^n$ a pour rayon de convergence $+\infty$....
Questions du sujet 1. Montrer que la fonction $\psi : u \mapsto \frac{e^{-u}}{\sqrt{u}}$ est int\’egrable sur $I$. 2. D\’eterminer les...
Questions du sujet 1. I.A.1) Pour un polynôme non nul $P \in \mathbb{R}_n[X]$, exprimer $\deg(\tau(P))$ et $cd(\tau(P))$ à l’aide de...
Questions du sujet 1. Déterminer les coefficients de Fourier de $H_r$ et $H_r$ en fonction de $r$ et des $a_k$.}...
Questions du sujet 1. I.A.1) Justifier que $\theta$ et $R$ sont bien définies. 2. I.A.2) Lorsque $z$ vaut successivement $z_1...
Questions du sujet 1. I.A – Soit $n \in \mathbb{N}^*$. Déterminer le module et un argument de $\left(1 + \dfrac{z}{n}\right)^n$...
Questions du sujet 1. Soient $(\xi_k)_{k \in \mathbb{N}}$ une suite dans $\mathbb{C}$ et $n \in \mathbb{N}$, démontrer par récurrence que\[\prod_{k=1}^n...
Questions du sujet 1. En utilisant la formule des probabilités totales, montrer que $P(S_{k+1} = 1)$ s’écrit comme une combinaison...
Questions du sujet 1. En utilisant la formule des probabilités totales, montrer que $P(S_{k+1} = 1)$ s’écrit comme une combinaison...
Questions du sujet 1. Montrer que, pour tout $x \in ]-1, 1[$, $$ \frac{1}{\sqrt{1 – x}} = \sum_{k=0}^{\infty} \binom{2k}{k} \frac{1}{4^k}...