
Mines Maths 2 MP 2014
Questions du sujet 1. Montrer que si $f$ admet un point fixe $x$, celui-ci est unique. 2. Soit $x_0 \in...
Questions du sujet 1. Montrer que si $f$ admet un point fixe $x$, celui-ci est unique. 2. Soit $x_0 \in...
Questions du sujet 1. Montrer que la fonction $\psi : u \mapsto \frac{e^{-u}}{\sqrt{u}}$ est int\’egrable sur $I$. 2. D\’eterminer les...
Questions du sujet 1. Justifier l’existence de $R_n(x)$. Que vaut la somme $T_n(x) + R_n(x)$ ? 2. En appliquant la...
Questions du sujet 1. Déterminer les coefficients de Fourier de $H_r$ et $H_r$ en fonction de $r$ et des $a_k$.}...
Questions du sujet 1. I.A – Quelle inclusion existe-t-il entre les ensembles $E$ et $E_0$? 2. I.B – Montrer que...
Questions du sujet 1. I.A.1) a) Montrer que pour tout $(x, y) \in \Omega$, l’ouvert $\Omega$ contient un sous-ensemble de...
Questions du sujet 1. I.A – Soit $n \in \mathbb{N}^*$. Déterminer le module et un argument de $\left(1 + \dfrac{z}{n}\right)^n$...
Questions du sujet 1. Soit $f \in C^0_\#$, démontrer que la suite des $c_n(f)$ où $n \in \mathbb{Z}$, est bornée.}...
Questions du sujet
Questions du sujet 1. Déterminer dans le quart de plan $x \geq 0, y \leq 0$, une équation polaire de...