
Centrale Maths 1 MP 2017
Questions du sujet 1. I.A.1) Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont deux sous-espaces vectoriels supplémentaires orthogonaux dans $\mathcal{M}_n(\mathbb{R})$ et préciser...
Questions du sujet 1. I.A.1) Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont deux sous-espaces vectoriels supplémentaires orthogonaux dans $\mathcal{M}_n(\mathbb{R})$ et préciser...
Questions du sujet 1. Soit $r$ et $R$ des nombres réels strictement positifs, $\alpha$ et $\theta$ des nombres réels. On...
Questions du sujet 1. Justifier qu’il existe un unique endomorphisme $u$ de $\mathbb{R}^n$ tel que pour tous $x, y$ dans...
Questions du sujet 1. Montrer que si $n \in \mathbb{N}$, l’application $u_n : R_n[X] \to R_n[X]$ donnée par la formule...
Questions du sujet 1. Montrer que pour toute base orthonormée $(e_1,e_2,\ldots,e_n)$ de $\mathbb{R}^n$, on a la formule $\mathrm{tr}(A) = \sum_{i=1}^n...
Questions du sujet 1. I.A.1) Soient $F$ et $G$ deux sous-espaces supplémentaires de $E$ et $s$ la symétrie par rapport...
Questions du sujet 1. Calculer $F_2(\lambda)$, $L_2(\lambda)$. 2. Exhiber une infinité de matrices $J$ qui satisfassent c). 3. Montrer que...
Questions du sujet 1. Soient $A$ et $B \in M_n$, montrer que $\mathrm{tr}(AB) = \mathrm{tr}(BA)$. 2. Montrer que la trace...
Questions du sujet 1. Montrer que $h u = -u$ et que $h v = v$ dès que $v$ est...
Questions du sujet 1. I.A.1) Justifier que $\theta$ et $R$ sont bien définies. 2. I.A.2) Lorsque $z$ vaut successivement $z_1...