
Centrale Maths 2 MP 2017
Questions du sujet 1. I.A.1) Soit $X$ et $X’$ deux variables aléatoires à valeurs dans $\mathbb{N}$. Justifier que $X \sim...
Questions du sujet 1. I.A.1) Soit $X$ et $X’$ deux variables aléatoires à valeurs dans $\mathbb{N}$. Justifier que $X \sim...
Questions du sujet 1. I.A.1) Déterminer $T_0$, $T_1$, $T_2$ et $T_3$. 2. I.A.2) En remarquant que pour tout réel $\theta$,...
Questions du sujet 1. I.A.1) Justifier que la série de terme général $a_n = \frac{1}{n} – \int_n^{n-1}\frac{dt}{t}$ converge. 2. I.A.2)...
Questions du sujet 1. I.A.1) Soit $u$ un endomorphisme de $\mathbb{R}^n$. Montrer que $u$ est autoadjoint défini positif si et...
Questions du sujet 1. Montrer que l’ensemble $J_x$ des polynômes $A$ tels que $A(\sigma)(x) = 0$ est un idéal de...
Questions du sujet 1. I.A.1) Quel est le domaine de définition $\mathcal{D}$ de la fonction $\Gamma$~? 2. I.A.2) Pour tout...
Questions du sujet 1. I.A – Soit $k$ et $n$ deux entiers strictement positifs. Montrer qu’il n’existe qu’un nombre fini...
Questions du sujet 1. I.A – Montrer qu’une droite $F$ engendrée par un vecteur $u$ est stable par $f$ si...
Questions du sujet 1. I.A – Soit $A$ une matrice carrée réelle de taille $n$ et $b$ un élément de...
Questions du sujet 1. I.A.1) Montrer que \(\sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = 1\). 2. I.A.2) Montrer que \(\sum_{k=0}^{n} k \binom{n}{k}...