
CCINP Maths 2 PC 2011
Questions du sujet 1. I.1.1. Montrer que $\sum u_n$ converge simplement sur $\mathbb{R}$ tout entier. 2. I.1.2. Montrer que, pour...
Questions du sujet 1. I.1.1. Montrer que $\sum u_n$ converge simplement sur $\mathbb{R}$ tout entier. 2. I.1.2. Montrer que, pour...
Questions du sujet 1. I.1. Montrer que cette s\’erie de fonctions converge simplement sur D.} 2. I.2.1. Soit p \in...
Questions du sujet 1. I.1. Soit \( x \) et \( c \) un nombre complexe fixé.\\ Résoudre dans l’ensemble...
Questions du sujet 1. I.1.1. Montrer que gs est solution de (Es) sur ] − 1, +1[. 2. I.1.2. Calculer...
Questions du sujet 1. Étant donné $\lambda \in \mathbb{R}$, comparer les équations $(E_\lambda)$ et $(E_{-\lambda-1})$. 2. Montrer que, pour que...
Questions du sujet 1. I.1.1/ Expliciter $F(x)$, si $f$ est définie sur $\mathbb{R}$ par $f(t)=1$. 2. I.1.2/ Expliciter $F(x)$, si...
Questions du sujet 1. Écrire une fonction produit A B ( , ) prenant en arguments deux matrices carrées A...
Questions du sujet 1. Exprimer, pour $k$ non nul, $P(X = k)$ en fonction de $P(X > k-1)$ et de...
Questions du sujet 1. Soit $k \in \mathbb{N}$. Justifier l’existence puis calculer l’intégrale $$I_k = \int_0^1 t^{2k} \ln t \...
Questions du sujet 1. Déterminer la fonction génératrice d’une variable aléatoire suivant une loi géométrique de paramètre $p \in ]0,...