
Mines Maths 2 PC 2008
Questions du sujet 1. Montrer, pour tout entier relatif $m$, que $u_m$ est $2\pi$-périodique, continue sur $\mathbb{R}$ et que l’on...
Questions du sujet 1. Montrer, pour tout entier relatif $m$, que $u_m$ est $2\pi$-périodique, continue sur $\mathbb{R}$ et que l’on...
Questions du sujet 1. Soit $\varphi(\lambda) = \lambda^{2t}(1 – \lambda)^2$ pour $\lambda \in [0, 1]$. Calculer $\max_{\lambda \in [0, 1]}...
Questions du sujet 1. Montrer que si $A$ est positive, alors pour toute matrice réelle $M \in \mathcal{M}_{n,p}$, la matrice...
Questions du sujet 1. Quelle est la dimension de l’espace vectoriel $C$ ? 2. Démontrer que l’espace $C$ est une...
Questions du sujet 1. I-1. Exemples :\\ Déterminer toutes les solutions de l’équation différentielle E vérifiant les conditions C dans...
Questions du sujet 1. Montrer que si $f$ appartient à $C^0$ alors $T f$ aussi. 2. Montrer que pour tout...
Questions du sujet 1. Montrer que $kMNk \leq kMk\ kNk$ pour toutes les matrices $M \in M_{n,r}(K)$ et $N \in...
Questions du sujet 1. Montrer les inégalités suivantes :\\ \[ \ln(1 + t) \leq t, \quad \text{pour tout } t...
Questions du sujet 1. Démontrer que toute fonction $f$, qui appartient à l’ensemble $F$, est, sur l’intervalle ouvert $I =...
Questions du sujet 1. D\’emontrer que, lorsque la fonction $h$, d\’efinie sur $\mathbb{R}$, est \’egale \`a une constante r\’eelle $\alpha$...