
Mines Maths 1 MP 2017
Questions du sujet 1. Justifier que $P$ et $D$ sont des sous-espaces vectoriels de $E$. 2. Montrer que si $f...
Questions du sujet 1. Justifier que $P$ et $D$ sont des sous-espaces vectoriels de $E$. 2. Montrer que si $f...
Questions du sujet 1. Soit $r$ et $R$ des nombres réels strictement positifs, $\alpha$ et $\theta$ des nombres réels. On...
Questions du sujet 1. Montrer que J est une matrice de permutation. Calculer les valeurs propres réelles et complexes de...
Questions du sujet 1. Justifier qu’il existe un unique endomorphisme $u$ de $\mathbb{R}^n$ tel que pour tous $x, y$ dans...
Questions du sujet 1. Montrer que si $n \in \mathbb{N}$, l’application $u_n : R_n[X] \to R_n[X]$ donnée par la formule...
Questions du sujet 1. Montrer que la matrice $H_n$ est symétrique réelle et définie positive. On pourra s’aider du calcul...
Questions du sujet 1. Montrer qu’une matrice symétrique $S \in S_n(\mathbb{R})$ est définie positive si et seulement si son spectre...
Questions du sujet 1. Montrer que si $f$ admet un point fixe $x$, celui-ci est unique. 2. Soit $x_0 \in...
Questions du sujet 1. Montrer que pour toute base orthonormée $(e_1,e_2,\ldots,e_n)$ de $\mathbb{R}^n$, on a la formule $\mathrm{tr}(A) = \sum_{i=1}^n...
Questions du sujet 1. Montrer que $S_{n−1}$ est un compact de $\R^n$ et en déduire l’existence de :\\ $\|M\|_{op} =...