
Mines Maths 1 PC 2002
Questions du sujet 1. Déterminer l’ensemble de définition de la fonction $F$. Étudier les variations de la fonction $F$ et...
Questions du sujet 1. Déterminer l’ensemble de définition de la fonction $F$. Étudier les variations de la fonction $F$ et...
Questions du sujet 1. Soit $z$ un réel strictement positif. Déterminer des conditions nécessaires et suffisantes sur les réels $\alpha$...
Questions du sujet 1. Justifier que la fonction $f$ est intégrable sur $]0,+\infty[$ puis, à l’aide d’un théorème d’intégration terme...
Questions du sujet 1. I.1. Soit $X$ une variable aléatoire qui suit une loi de Poisson de paramètre $\lambda >...
Questions du sujet 1. I – 1.1.\\ Justifier l’existence de l’intégrale $K = \int_{0}^{+\infty} \frac{1-\cos(t)}{t^2}\,dt$. 2. I – 1.2.\\ Pour...
Questions du sujet 1. Justifier la nécessité de changer le matériau de la bande de captage du pantographe plutôt que...
Questions du sujet 1. Montrer que : $\forall t \in \mathbb{R}_+, |\sin(t)| \leq t$. 2. Montrer que les fonctions $F,...
Questions du sujet 1. Soit $t$ un réel et soit $A = \begin{pmatrix} 0 & t \\ – t &...
Questions du sujet 1. I.A.1) Soient $U$ et $V$ deux variables aléatoires sur $(\Omega, \mathcal{A}, P)$ possédant un moment d’ordre...
Questions du sujet 1. I.A.1) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante, puis qu’elle est convergente. On note $l$ sa...