
CCINP Maths 1 MPI 2020
Questions du sujet 1. Q1. Démontrer que $\ell^\infty$ est un espace vectoriel réel et que l’application $u = (u_n)_{n\in\mathbb{N}^*} \longmapsto...
Questions du sujet 1. Q1. Démontrer que $\ell^\infty$ est un espace vectoriel réel et que l’application $u = (u_n)_{n\in\mathbb{N}^*} \longmapsto...
Questions du sujet 1. Q1. Montrer que 1 est valeur propre de $A(\alpha, \beta)$ et determiner le sous-espace propre associé....