
CCINP Maths 1 PSI 2011
Questions du sujet 1. I.1.1. Préciser le rayon de convergence de cette série entière, montrer que la fonction $L$ est...
Questions du sujet 1. I.1.1. Préciser le rayon de convergence de cette série entière, montrer que la fonction $L$ est...
Questions du sujet 1. I.1.1/ Étudier la fonction $d$ ; en déduire qu’il existe un nombre réel $\alpha$ tel que,...
Questions du sujet 1. I.1.1/ Préciser, selon la valeur du nombre réel $x$, la limite de $\dfrac{1}{n^x}$ lorsque l’entier $n$...
Questions du sujet 1. Justifier que les fonctions $f$ et $g$ sont différentiables en tout vecteur $(x, y) \in \mathbb{R}^2$...
Questions du sujet 1. I.A.1) Exprimer $\frac{\partial \tilde{f}}{\partial r}(r,\theta)$ et $\frac{\partial \tilde{f}}{\partial \theta}(r,\theta)$ en fonction de $r$, $\theta$, $\frac{\partial f}{\partial...
Questions du sujet 1. I.A.1) Dans chacun des deux cas suivants, montrer que f \ast g est définie et bornée...
Questions du sujet 1. Pour tout $n$ dans $\mathbb{N}$, déterminer le degré de $T_n$, puis montrer que $(T_k )_{0\leq k\leq...
Questions du sujet 1. Montrer que $\mathcal{H}(U)$ est un sous-espace vectoriel de $\mathcal{C}^2(U, \mathbb{R})$. 2. Soit $f \in \mathcal{H}(U)$. Montrer...
Questions du sujet 1. Justifier que pour tout $f \in L$, $\hat{f}$ est bien définie et continue sur $\mathbb{R}$.} 2....
Questions du sujet 1. I.A.1) Justifier l’égalité \[ \forall t \in \mathbb{R} \quad G_x(t) = e^{ix\sin t} = \sum_{n=-\infty}^{+\infty} \varphi_n(x)...