
Centrale Maths 1 PSI 2002
Questions du sujet 1. A – Soit $h \in C$, $h \neq 0$. Justifier l’égalité $C = \operatorname{Vect}(h) \oplus \operatorname{Vect}(h)^{\perp}$...
Questions du sujet 1. A – Soit $h \in C$, $h \neq 0$. Justifier l’égalité $C = \operatorname{Vect}(h) \oplus \operatorname{Vect}(h)^{\perp}$...
Questions du sujet 1. Déterminer la fonction génératrice d’une variable aléatoire suivant une loi géométrique de paramètre $p \in ]0,...
Questions du sujet 1. Représenter graphiquement la fonction $f$ sur $\mathbb{R}$, puis déterminer la série de Fourier de la fonction...
Questions du sujet 1. Soit $t$ un réel et soit $A = \begin{pmatrix} 0 & t \\ – t &...