
CCINP Maths 2 MP 2021
Questions du sujet 1. On munit $M_n(\mathbb{R})$ du produit scalaire canonique $(A|B) = \mathrm{trace}(A^tB)$, déterminer $D_n(\mathbb{R})^{\perp}$, l’orthogonal de $D_n(\mathbb{R})$ pour...
Questions du sujet 1. On munit $M_n(\mathbb{R})$ du produit scalaire canonique $(A|B) = \mathrm{trace}(A^tB)$, déterminer $D_n(\mathbb{R})^{\perp}$, l’orthogonal de $D_n(\mathbb{R})$ pour...
Questions du sujet 1. Écrire une fonction booléenne estPremier(n) qui prend en argument un entier naturel non nul n et...
Questions du sujet 1. Démontrer que l’on définit un produit scalaire sur $E$ en posant pour $f$ et $g$ éléments...
Questions du sujet 1. Déterminer le plus petit entier naturel non nul $p$ tel que $3^p \equiv 1$ modulo $11$....
Questions du sujet 1. Justifier qu’il existe une matrice inversible $P \in M_2(\mathbb{R})$, qu’il n’est pas nécessaire de déterminer explicitement,...
Questions du sujet 1. Montrer que la suite $(I_m)_{m\in\mathbb{N}}$ est décroissante. 2. Montrer que pour tout $m \in \mathbb{N}$ :\\...
Questions du sujet 1. I.1 Soient $V$ un vecteur non nul de $\mathcal{M}_{n,1}(\mathbb{K})$ et $\lambda$ un élément de $\mathbb{K}$. Montrer...
Questions du sujet 1. L.1\quad Dessiner les ensembles $T$ et $D$ sur un même dessin. En notant $x$ et $y$...
Questions du sujet 1. Montrer que l’ensemble $J_x$ des polynômes $A$ tels que $A(\sigma)(x) = 0$ est un idéal de...
Questions du sujet 1. I.A.1) Justifier que $\mathcal{X}_n$ est un ensemble fini et déterminer son cardinal. 2. I.A.2) Démontrer que...