
Centrale Maths 2 MP 2008
Questions du sujet 1. I.A.1) Calculer $u_n$ puis pour $k \in [[1, n-1]]$ exprimer $u_{n-k}$ en fonction de $u_n, u_{n-1},...
Questions du sujet 1. I.A.1) Calculer $u_n$ puis pour $k \in [[1, n-1]]$ exprimer $u_{n-k}$ en fonction de $u_n, u_{n-1},...
Questions du sujet 1. I.1.1. Déterminer $x_2$. Pour tout $p$ dans $\mathbb{N}^\ast$ expliciter $x_p$ en fonction de $p$ et de...
Questions du sujet 1. Justifier que la matrice $$ A = \begin{pmatrix} 4 & 2 & 2 \\ 6 &...
Questions du sujet 1. I.1.a Justifier sans calcul que la matrice $A = \begin{pmatrix} 1 & 3 & 0 \\...
Questions du sujet 1. Rappeler à quel type d’isomérie s’apparentent des espèces dont la structure diffère par la rotation autour...
Questions du sujet 1. Justifier la nécessité de changer le matériau de la bande de captage du pantographe plutôt que...
Questions du sujet 1. Montrer que : $\forall t \in \mathbb{R}_+, |\sin(t)| \leq t$. 2. Montrer que les fonctions $F,...
Questions du sujet 1. Montrer que la fonction $f$ est bien définie sur $\mathbb{R}$. 2. Pour tout $p \in \mathbb{N}$,...
Questions du sujet 1. I.1.1 Montrer que, pour tout entier $n$, la restriction, notée $\Phi_n$ de $\Phi$ à $\mathbb{R}_n[X]$, définit...
Questions du sujet 1. Montrer que $h u = -u$ et que $h v = v$ dès que $v$ est...