
CCINP Maths 2 PSI 2011
Questions du sujet 1. I.1.1. On suppose que $S = \begin{pmatrix}2 & 3 \\ 3 & 4\end{pmatrix}$. Déterminer les valeurs...
Questions du sujet 1. I.1.1. On suppose que $S = \begin{pmatrix}2 & 3 \\ 3 & 4\end{pmatrix}$. Déterminer les valeurs...
Questions du sujet 1. I.1.1. Déterminer le polynôme caractéristique de $I$. En déduire les valeurs propres réelles ou complexes de...
Questions du sujet 1. I.1.1. Déterminer $x_2$. Pour tout $p$ dans $\mathbb{N}^\ast$ expliciter $x_p$ en fonction de $p$ et de...
Questions du sujet 1. I.A.1.1 Justifier l’affirmation : l’endomorphisme $s$ est diagonalisable. Calculer la matrice $S^2$. 2. I.A.1.2 En déduire...
Questions du sujet 1. Justifier, sans calcul, que la matrice $A$ est diagonalisable puis déterminer une matrice $D$ diagonale réelle...
Questions du sujet 1. I.1.a Justifier sans calcul que la matrice $A = \begin{pmatrix} 1 & 3 & 0 \\...
Questions du sujet 1. Justifier qu’il existe une matrice inversible $P \in M_2(\mathbb{R})$, qu’il n’est pas nécessaire de déterminer explicitement,...
Questions du sujet 1. Montrer que la suite $(I_m)_{m\in\mathbb{N}}$ est décroissante. 2. Montrer que pour tout $m \in \mathbb{N}$ :\\...
Questions du sujet 1. Soit $t$ un réel et soit $A = \begin{pmatrix} 0 & t \\ – t &...
Questions du sujet 1. Soient $A$ et $B$ deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que $\forall (X, Y) \in (\mathcal{M}_{n,1}(\mathbb{R}))^2, X^\top...