
Mines Maths 1 MP 2019
Questions du sujet 1. Justifier que la série entière $\sum_{n \geq 1} \frac{(pn)^r}{(pn)!} z^n$ a pour rayon de convergence $+\infty$....
Questions du sujet 1. Justifier que la série entière $\sum_{n \geq 1} \frac{(pn)^r}{(pn)!} z^n$ a pour rayon de convergence $+\infty$....
Questions du sujet 1. I.A.1) Justifier l’égalité \[ \forall t \in \mathbb{R} \quad G_x(t) = e^{ix\sin t} = \sum_{n=-\infty}^{+\infty} \varphi_n(x)...
Questions du sujet 1. Soient $(\xi_k)_{k \in \mathbb{N}}$ une suite dans $\mathbb{C}$ et $n \in \mathbb{N}$, démontrer par récurrence que\[\prod_{k=1}^n...