
Centrale Maths 1 MP 2018
Questions du sujet 1. Soient $a$ et $b$ dans $E$. Montrer la relation suivante et en donner une interprétation géométrique...
Questions du sujet 1. Soient $a$ et $b$ dans $E$. Montrer la relation suivante et en donner une interprétation géométrique...
Questions du sujet 1. I.A.1) Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont deux sous-espaces vectoriels supplémentaires orthogonaux dans $\mathcal{M}_n(\mathbb{R})$ et préciser...
Questions du sujet 1. I.A.1) Soit $u$ un endomorphisme de $\mathbb{R}^n$. Montrer que $u$ est autoadjoint défini positif si et...
Questions du sujet 1. I.A – Soit $A$ une matrice carrée réelle de taille $n$ et $b$ un élément de...
Questions du sujet 1. I.A.1) Montrer que $A \in SO(2)$ si et seulement si il existe un réel $t$ tel...
Questions du sujet 1. I.A.1) Justifier que $\mathcal{X}_n$ est un ensemble fini et déterminer son cardinal. 2. I.A.2) Démontrer que...
Questions du sujet 1. I.A.1) La matrice $\Delta_{p+1}$ appartient-elle à l’ensemble $O(1, p)$ ? à l’ensemble $O^+(1, p)$ ? 2....
Questions du sujet 1. I.A – Démontrer que les valeurs propres réelles de $A$ sont dans $R(A)$. 2. I.B.1) Démontrer...
Questions du sujet 1. Soient $t_1$ et $t_2$ appartenant à \mathcal{S}_n, \text{ démontrer que } t_1 + t_2 \in \mathcal{S}_n.$}...