
CCINP Maths 2 PSI 2011
Questions du sujet 1. I.1.1. On suppose que $S = \begin{pmatrix}2 & 3 \\ 3 & 4\end{pmatrix}$. Déterminer les valeurs...
Questions du sujet 1. I.1.1. On suppose que $S = \begin{pmatrix}2 & 3 \\ 3 & 4\end{pmatrix}$. Déterminer les valeurs...
Questions du sujet 1. Écrire une fonction produit A B ( , ) prenant en arguments deux matrices carrées A...
Questions du sujet 1. Justifier que la matrice $$ A = \begin{pmatrix} 4 & 2 & 2 \\ 6 &...
Questions du sujet 1. Justifier, sans calcul, que la matrice $A$ est diagonalisable puis déterminer une matrice $D$ diagonale réelle...
Questions du sujet 1. Démontrer que l’on définit un produit scalaire sur $E$ en posant pour $f$ et $g$ éléments...
Questions du sujet 1. Déterminer la loi de $X_1$. 2. Déterminer la loi conditionnelle de $X_2$ sachant l’évènement $(X_1 =...
Questions du sujet 1. Déterminer $L_0$, $L_1$ et vérifier que $L_2 = \frac{1}{2} (3X^2 – 1)$. 2. Justifier que $L_n$...
Questions du sujet 1. I.1. Montrer que $a = -(z_1 + z_2)$ et $b = z_1 z_2$. 2. I.2.a. Vérifier...
Questions du sujet 1. I.1.1 \textbf{Enoncer les propriet\’ es de la sph\` ere unit\’ e $\Omega_n$ ainsi que celles de...
Questions du sujet 1. Montrer que, pour tout \( M \) dans \( \mathcal{M}_n(\mathbb{R}) \) et pour tous \( P...