
CCINP Maths 1 MPI 2013
Questions du sujet 1. Représenter graphiquement la fonction $f$ sur $\mathbb{R}$, puis déterminer la série de Fourier de la fonction...
Questions du sujet 1. Représenter graphiquement la fonction $f$ sur $\mathbb{R}$, puis déterminer la série de Fourier de la fonction...
Questions du sujet 1. On munit $M_n(\mathbb{R})$ du produit scalaire canonique $(A|B) = \mathrm{trace}(A^tB)$, déterminer $D_n(\mathbb{R})^{\perp}$, l’orthogonal de $D_n(\mathbb{R})$ pour...
Questions du sujet 1. Démontrer que l’on définit un produit scalaire sur $E$ en posant pour $f$ et $g$ éléments...
Questions du sujet 1. I.1. Donner la décomposition binaire (en base 2) de l’entier 21. 2. I.2. Quelle valeur est...
Questions du sujet 1. I.1. Montrer que $a = -(z_1 + z_2)$ et $b = z_1 z_2$. 2. I.2.a. Vérifier...
Questions du sujet 1. Montrer que la fonction $f$ est bien définie sur $\mathbb{R}$. 2. Pour tout $p \in \mathbb{N}$,...
Questions du sujet 1. I.1 Qu’affirme le théorème de Cauchy-Lipschitz linéaire quant à la structure de l’ensemble des solutions de...
Questions du sujet 1. I.1 Soient $V$ un vecteur non nul de $\mathcal{M}_{n,1}(\mathbb{K})$ et $\lambda$ un élément de $\mathbb{K}$. Montrer...
Questions du sujet 1. I.A – Montrer que, pour tout polynôme $P \in \mathbb{C}[X]$, l’application $f_P : A \mapsto P...