
CCINP Maths 1 PSI 2013
Questions du sujet 1. I.1.1 Montrer que $f$ est une fonction impaire dérivable sur $\mathbb{R}$. 2. I.1.2 Montrer que $f$...
Questions du sujet 1. I.1.1 Montrer que $f$ est une fonction impaire dérivable sur $\mathbb{R}$. 2. I.1.2 Montrer que $f$...
Questions du sujet 1. I.1 Vérifier la formule donnant $L(f)$ pour $f$ définie sur $[0, 1]$ par $f (t) =...
Questions du sujet 1. I.1.1 \textbf{Enoncer les propriet\’ es de la sph\` ere unit\’ e $\Omega_n$ ainsi que celles de...
Questions du sujet 1. I.1.1 Montrer que, pour tout entier $n$, la restriction, notée $\Phi_n$ de $\Phi$ à $\mathbb{R}_n[X]$, définit...
Questions du sujet 1. I.A.1) Déterminer un couple $(A, \vec{b})$ dans $SO(2) \times \mathbb{R}^2$ tel que l’on ait $M(A,\vec{b}) =...
Questions du sujet 1. Pour tout $n$ dans $\mathbb{N}$, déterminer le degré de $T_n$, puis montrer que $(T_k )_{0\leq k\leq...