
Centrale Maths 1 PSI 2002
Questions du sujet 1. A – Soit $h \in C$, $h \neq 0$. Justifier l’égalité $C = \operatorname{Vect}(h) \oplus \operatorname{Vect}(h)^{\perp}$...
Questions du sujet 1. A – Soit $h \in C$, $h \neq 0$. Justifier l’égalité $C = \operatorname{Vect}(h) \oplus \operatorname{Vect}(h)^{\perp}$...
Questions du sujet 1. Montrer que, pour tout \( M \) dans \( \mathcal{M}_n(\mathbb{R}) \) et pour tous \( P...
Questions du sujet 1. Soient $a$ et $b$ dans $E$. Montrer la relation suivante et en donner une interprétation géométrique...
Questions du sujet 1. I.A.1) Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont deux sous-espaces vectoriels supplémentaires orthogonaux dans $\mathcal{M}_n(\mathbb{R})$ et préciser...