CCINP Maths 1 PC 2010
Questions du sujet 1. Montrer que f est diagonalisable. 2. Déterminer une base $(v_1, v_2, v_3)$ de $\mathbb{R}^3$ formée de...
Questions du sujet 1. Montrer que f est diagonalisable. 2. Déterminer une base $(v_1, v_2, v_3)$ de $\mathbb{R}^3$ formée de...
Questions du sujet 1. I.1 Montrer que si $S$ appartient à $\mathcal{S}^+_n(\mathbb{R})$, on a pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $tMSM$...
Questions du sujet 1. I.1 Montrer que si $\lambda_1, \ldots, \lambda_n$ sont des réels positifs, distincts ou non, il existe...
Questions du sujet 1. I.1 Déterminer suivant les valeurs de $a$, le rang de la matrice $A(a) – \lambda I_3$....
Questions du sujet 1. I.1 Soit la matrice $P$ donnée par : $P = \begin{pmatrix} 1 & 2 \\ 0...
Questions du sujet 1. I.1 Soit $A$ la matrice de $M_5(\mathbb{R})$ donnée par : \[ A=\begin{pmatrix} 2 & 1 &...
Questions du sujet 1. I.1.1. Montrer que $\sum u_n$ converge simplement sur $\mathbb{R}$ tout entier. 2. I.1.2. Montrer que, pour...
Questions du sujet 1. I.1. Montrer que cette s\’erie de fonctions converge simplement sur D.} 2. I.2.1. Soit p \in...
Questions du sujet 1. I.1. Soit \( x \) et \( c \) un nombre complexe fixé.\\ Résoudre dans l’ensemble...
Questions du sujet 1. I.1.1. Montrer que gs est solution de (Es) sur ] − 1, +1[. 2. I.1.2. Calculer...