Centrale Maths 1 MP 2005
Questions du sujet 1. I.A.1) Montrer que $M$ est une forme linéaire sur $B$, que l’ensemble des fonctions moyennables est...
Questions du sujet 1. I.A.1) Montrer que $M$ est une forme linéaire sur $B$, que l’ensemble des fonctions moyennables est...
Questions du sujet 1. I.A – Préciser sur un dessin la signification géométrique du paramètre intervenant dans le paramétrage (1)....
Questions du sujet 1. I.A.1) Calculer, sous forme trigonométrique réelle, les coefficients de Fourier de la fonction $F$ $2\pi$-périodique impaire...
Questions du sujet 1. Pour $x \in \mathbb{R}$, montrer l’existence et donner la valeur des expressions suivantes : 2. On...
Questions du sujet 1. a) Vérifier que si une suite est à décroissance exponentielle alors elle est à décroissance rapide....
Questions du sujet 1. I.A.1) Montrer que A est positive si et seulement si toutes ses valeurs propres sont positives....
Questions du sujet 1. I.A.1) Pour tout élément $x$ de $E$, on note $h_x$ l’application de $E$ dans $IK$ telle...
Questions du sujet 1. I.A.1) Montrer qu’un endomorphisme symétrique de $E$ est dans $S_+(E)$ (resp. $S_{++}(E)$) si et seulement si...
Questions du sujet 1. I.A.1) Calculer $u_n$ puis pour $k \in [[1, n-1]]$ exprimer $u_{n-k}$ en fonction de $u_n, u_{n-1},...
Questions du sujet 1. I.A.1) Soit $a \in L(E)$ et $(e) = (\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n)$ une base orthonormée de...