Mines Maths 1 MP 2010
Questions du sujet 1. 1) Montrer que les deux séries qui entrent dans la définition de g_f(z) sont convergentes pour...
Questions du sujet 1. 1) Montrer que les deux séries qui entrent dans la définition de g_f(z) sont convergentes pour...
Questions du sujet 1. Soit $f \in E$. On suppose, dans cette question, que $f$ admet des moments de tous...
Questions du sujet 1. Établir pour tous $m_1, m_2, \cdots, m_n$ éléments de $M_{n,1}(\mathbb{R})$, l’inégalité $$ |\,\mathrm{per}(m_1, \cdots, m_n)| \leq...
Questions du sujet 1. Calculer $\chi(1)$. 2. Lorsque $N = 2$, déterminer $\chi$. 3. On suppose jusqu’à la fin de...
Questions du sujet 1. Montrer que pour tout $x \in B$, l’ensemble $\Gamma_x = \{\theta \in \mathbb{R}_+ \mid \theta x...
Questions du sujet 1. Soit $z = (z_n, n \geq 1)$ une suite réelle. Rappeler les définitions suivantes : \[...
Questions du sujet 1. Déterminer un éventuel prolongement par continuité de la fonction $\varphi$ en $0$. 2. Étudier les variations...
Questions du sujet 1. Calculer, pour toute valeur de l’entier strictement positif $n$, l’intégrale $I_n$. 2. Déterminer les constantes $A$,...
Questions du sujet 1. a. Démontrer que la fonction $E$ est développable en série entière sur la droite réelle $\mathbb{R}$....
Questions du sujet 1. Montrer que pour toute variable aléatoire $X$ réelle à valeurs dans $\{1,\ldots,n\}$ et pour tout $m...