Centrale Maths 1 PC 2017
Questions du sujet 1. I.A – Soit $k$ et $n$ deux entiers strictement positifs. Montrer qu’il n’existe qu’un nombre fini...
Questions du sujet 1. I.A – Soit $k$ et $n$ deux entiers strictement positifs. Montrer qu’il n’existe qu’un nombre fini...
Questions du sujet 1. I.A – Montrer qu’une droite $F$ engendrée par un vecteur $u$ est stable par $f$ si...
Questions du sujet 1. I.A – Soit $A$ une matrice carrée réelle de taille $n$ et $b$ un élément de...
Questions du sujet 1. I.A.1) Montrer que \(\sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = 1\). 2. I.A.2) Montrer que \(\sum_{k=0}^{n} k \binom{n}{k}...
Questions du sujet 1. Soient $A$ et $B \in M_n$, montrer que $\mathrm{tr}(AB) = \mathrm{tr}(BA)$. 2. Montrer que la trace...
Questions du sujet 1. Montrer que $h u = -u$ et que $h v = v$ dès que $v$ est...
Questions du sujet 1. I.A.1) Justifier que $\mathcal{X}_n$ est un ensemble fini et déterminer son cardinal. 2. I.A.2) Démontrer que...
Questions du sujet 1. I.A.1) Soient $U$ et $V$ deux variables aléatoires sur $(\Omega, \mathcal{A}, P)$ possédant un moment d’ordre...
Questions du sujet 1. I.A.1) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante, puis qu’elle est convergente. On note $l$ sa...
Questions du sujet 1. I.A.1) Justifier que $\theta$ et $R$ sont bien définies. 2. I.A.2) Lorsque $z$ vaut successivement $z_1...