Mines Maths 1 PSI 2002
Questions du sujet 1. I-1. Rayon de convergence :\\a. Exemples : étant donnés un réel $a$ différent de 0 $(a...
Questions du sujet 1. I-1. Rayon de convergence :\\a. Exemples : étant donnés un réel $a$ différent de 0 $(a...
Questions du sujet 1. Justifier que la série entière $\sum_{n \geq 1} \frac{(pn)^r}{(pn)!} z^n$ a pour rayon de convergence $+\infty$....
Questions du sujet 1. Justifier que $P$ et $D$ sont des sous-espaces vectoriels de $E$. 2. Montrer que si $f...
Questions du sujet 1. Soit $r$ et $R$ des nombres réels strictement positifs, $\alpha$ et $\theta$ des nombres réels. On...
Questions du sujet 1. Montrer que J est une matrice de permutation. Calculer les valeurs propres réelles et complexes de...
Questions du sujet 1. Justifier qu’il existe un unique endomorphisme $u$ de $\mathbb{R}^n$ tel que pour tous $x, y$ dans...
Questions du sujet 1. Montrer que si $n \in \mathbb{N}$, l’application $u_n : R_n[X] \to R_n[X]$ donnée par la formule...
Questions du sujet 1. En observant que $V(f)$ et $-V^*(f)$ sont des primitives de $f$, montrer que pour tous $f,...
Questions du sujet 1. Montrer que la matrice $H_n$ est symétrique réelle et définie positive. On pourra s’aider du calcul...
Questions du sujet 1. Montrer qu’une matrice symétrique $S \in S_n(\mathbb{R})$ est définie positive si et seulement si son spectre...