
Centrale Maths 1 MP 2011
Questions du sujet 1. I.A.1) Soit $f$ une fonction réelle, définie continue et décroissante sur $[a, +\infty[$, où $a \in...
Questions du sujet 1. I.A.1) Soit $f$ une fonction réelle, définie continue et décroissante sur $[a, +\infty[$, où $a \in...
Questions du sujet 1. I.A.1) Etablir que $\tau = \tau_0 \cup \tau_1$. 2. I.A.2) Représenter sur une même figure $\tau_0$,...
Questions du sujet 1. I.1) Montrer qu’il existe un réel $c$ de l’intervalle $]1, 2[$ tel que $\Gamma'(c) = 0$....
Questions du sujet 1. I.A.1) Enoncer pr\’ecis\’ement le th\’eor\`eme de Cauchy-Lipschitz adapt\’e \`a l’\’equation $(E_\lambda)$ et exploiter l’unicit\’e pour prouver...
Questions du sujet 1. I.A – Question de cours Soit $(u_n)_{n \in \mathbb{N}}$ une suite de fonctions uniformément convergente sur...
Questions du sujet 1. I.A.1) Montrer que $M$ est une forme linéaire sur $B$, que l’ensemble des fonctions moyennables est...
Questions du sujet 1. I.A – Préciser sur un dessin la signification géométrique du paramètre intervenant dans le paramétrage (1)....
Questions du sujet 1. I.A.1) Calculer, sous forme trigonométrique réelle, les coefficients de Fourier de la fonction $F$ $2\pi$-périodique impaire...
Questions du sujet 1. Pour $x \in \mathbb{R}$, montrer l’existence et donner la valeur des expressions suivantes : 2. On...
Questions du sujet 1. a) Vérifier que si une suite est à décroissance exponentielle alors elle est à décroissance rapide....