
CCINP Maths 1 PSI 2007
Questions du sujet 1. I.1.1/ Expliciter $\alpha_k$ pour $k$ dans $[0,4]$. 2. I.1.2/ Montrer que $\alpha_n$ est un entier naturel...
Questions du sujet 1. I.1.1/ Expliciter $\alpha_k$ pour $k$ dans $[0,4]$. 2. I.1.2/ Montrer que $\alpha_n$ est un entier naturel...
Questions du sujet 1. I.1.1. On suppose que $S = \begin{pmatrix}2 & 3 \\ 3 & 4\end{pmatrix}$. Déterminer les valeurs...
Questions du sujet 1. I.1.1. Déterminer le polynôme caractéristique de $I$. En déduire les valeurs propres réelles ou complexes de...
Questions du sujet 1. I.1.1. Déterminer $x_2$. Pour tout $p$ dans $\mathbb{N}^\ast$ expliciter $x_p$ en fonction de $p$ et de...
Questions du sujet 1. I.A.1.1 Justifier l’affirmation : l’endomorphisme $s$ est diagonalisable. Calculer la matrice $S^2$. 2. I.A.1.2 En déduire...
Questions du sujet 1. I.1.1. Expliciter les entiers $r$ et $s$ tels que $\left(\begin{array}{c}i\\j\end{array}\right)=\frac{r!}{s!(r-s)!}$ pour les quatre coefficients $a_{1,1}$, $a_{1,\,...
Questions du sujet 1. Écrire une fonction produit A B ( , ) prenant en arguments deux matrices carrées A...
Questions du sujet 1. Exprimer, pour $k$ non nul, $P(X = k)$ en fonction de $P(X > k-1)$ et de...
Questions du sujet 1. Soit $k \in \mathbb{N}$. Justifier l’existence puis calculer l’intégrale $$I_k = \int_0^1 t^{2k} \ln t \...
Questions du sujet 1. Déterminer la fonction génératrice d’une variable aléatoire suivant une loi géométrique de paramètre $p \in ]0,...