Centrale Maths 2 MP 2025
Questions du sujet 1. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction dérivable telle que $f(x+y) = f(x) + f(y)...
Questions du sujet 1. Montrer que pour toute variable aléatoire $X$ réelle à valeurs dans $\{1,\ldots,n\}$ et pour tout $m...
Questions du sujet 1. On considère $g : [0, +\infty[ \to \R$ définie par $g(x) = e^{-x}$. Montrer que $g$...
Questions du sujet 1. Montrer les inégalités suivantes :\\ \[ \ln(1 + t) \leq t, \quad \text{pour tout } t...
Questions du sujet 1. Démontrer que toute fonction $f$, qui appartient à l’ensemble $F$, est, sur l’intervalle ouvert $I =...
Questions du sujet 1. On note $T_1$ la variable aléatoire égale au temps écoulé entre le temps 0 et le...
Questions du sujet 1. Déterminer les points critiques de $f$. 2. Expliciter des points $(x, y) \in \mathbb{R}^2$ arbitrairement proches...
Questions du sujet 1. Exprimer, pour $k$ non nul, $P(X = k)$ en fonction de $P(X > k-1)$ et de...
Questions du sujet 1. Déterminer la fonction génératrice d’une variable aléatoire suivant une loi géométrique de paramètre $p \in ]0,...