
CCINP Maths 1 PSI 2007
Questions du sujet 1. I.1.1/ Expliciter $\alpha_k$ pour $k$ dans $[0,4]$. 2. I.1.2/ Montrer que $\alpha_n$ est un entier naturel...
Questions du sujet 1. I.1.1/ Expliciter $\alpha_k$ pour $k$ dans $[0,4]$. 2. I.1.2/ Montrer que $\alpha_n$ est un entier naturel...
Questions du sujet 1. Soit $k \in \mathbb{N}$. Justifier l’existence puis calculer l’intégrale $$I_k = \int_0^1 t^{2k} \ln t \...
Questions du sujet 1. Q1. Démontrer que $\ell^\infty$ est un espace vectoriel réel et que l’application $u = (u_n)_{n\in\mathbb{N}^*} \longmapsto...
Questions du sujet 1. I.1. Soit $X$ une variable aléatoire qui suit une loi de Poisson de paramètre $\lambda >...
Questions du sujet 1. (a) Démontrer que $||\cdot||$ définit une norme sur $E$. \\ De même, $||\cdot||’$ est une norme...
Questions du sujet 1. Justifier qu’il existe une matrice inversible $P \in M_2(\mathbb{R})$, qu’il n’est pas nécessaire de déterminer explicitement,...
Questions du sujet 1. Déterminer la loi de $X_1$. 2. Déterminer la loi conditionnelle de $X_2$ sachant l’évènement $(X_1 =...
Questions du sujet 1. 1.a) D\’eterminer l’expression de $p_{0,2}(t)$, $p_{1,2}(t)$ et $p_{2,2}(t)$ en fonction de $t$. 2. 1.b) D\’eterminer les...
Questions du sujet 1. I – 1.1.\\ Justifier l’existence de l’intégrale $K = \int_{0}^{+\infty} \frac{1-\cos(t)}{t^2}\,dt$. 2. I – 1.2.\\ Pour...
Questions du sujet 1. Montrer que la suite $(I_m)_{m\in\mathbb{N}}$ est décroissante. 2. Montrer que pour tout $m \in \mathbb{N}$ :\\...