
Mines Maths 2 PC 2008
Questions du sujet 1. Montrer, pour tout entier relatif $m$, que $u_m$ est $2\pi$-périodique, continue sur $\mathbb{R}$ et que l’on...
Questions du sujet 1. Montrer, pour tout entier relatif $m$, que $u_m$ est $2\pi$-périodique, continue sur $\mathbb{R}$ et que l’on...
Questions du sujet 1. Q1 Soient $f \in P(\mathbb{R})$ et $g \in C_0(\mathbb{R})$. Montrer que l’intégrale $\int_{-\infty}^{+\infty} f(t)g(x-t)dt$ converge pour...
Questions du sujet 1. Montrer que si $f$ appartient à $C^0$ alors $T f$ aussi. 2. Montrer que pour tout...
Questions du sujet 1. Démontrer que toute fonction $f$, qui appartient à l’ensemble $F$, est, sur l’intervalle ouvert $I =...
Questions du sujet 1. D\’emontrer que, lorsque la fonction $h$, d\’efinie sur $\mathbb{R}$, est \’egale \`a une constante r\’eelle $\alpha$...
Questions du sujet 1. I-1. Rayon de convergence :\\a. Exemples : étant donnés un réel $a$ différent de 0 $(a...
Questions du sujet 1. I.1.1. Préciser le rayon de convergence de cette série entière, montrer que la fonction $L$ est...
Questions du sujet 1. I.1.1. Justifier rapidement l’affirmation : $B$ définit un produit scalaire sur $\mathbb{R}_n[X]$ mais pas sur $C(\mathbb{R},...
Questions du sujet 1. I.1.1/ Étudier la fonction $d$ ; en déduire qu’il existe un nombre réel $\alpha$ tel que,...
Questions du sujet 1. I.1.1/ Préciser, selon la valeur du nombre réel $x$, la limite de $\dfrac{1}{n^x}$ lorsque l’entier $n$...