Mines Maths 1 PSI 2004
Questions du sujet 1. Démontrer que toute fonction $f$, qui appartient à l’ensemble $F$, est, sur l’intervalle ouvert $I =...
Questions du sujet 1. Démontrer que toute fonction $f$, qui appartient à l’ensemble $F$, est, sur l’intervalle ouvert $I =...
Questions du sujet 1. I-1. Rayon de convergence :\\a. Exemples : étant donnés un réel $a$ différent de 0 $(a...
Questions du sujet 1. On note $T_1$ la variable aléatoire égale au temps écoulé entre le temps 0 et le...
Questions du sujet 1. Déterminer les points critiques de $f$. 2. Expliciter des points $(x, y) \in \mathbb{R}^2$ arbitrairement proches...
Questions du sujet 1. I.1.1. Préciser le rayon de convergence de cette série entière, montrer que la fonction $L$ est...
Questions du sujet 1. I.1.1/ Expliciter $\alpha_k$ pour $k$ dans $[0,4]$. 2. I.1.2/ Montrer que $\alpha_n$ est un entier naturel...
Questions du sujet 1. Exprimer, pour $k$ non nul, $P(X = k)$ en fonction de $P(X > k-1)$ et de...
Questions du sujet 1. Déterminer la fonction génératrice d’une variable aléatoire suivant une loi géométrique de paramètre $p \in ]0,...
Questions du sujet 1. Justifier que les fonctions $f$ et $g$ sont différentiables en tout vecteur $(x, y) \in \mathbb{R}^2$...
Questions du sujet 1. Justifier que la fonction $f$ est intégrable sur $]0,+\infty[$ puis, à l’aide d’un théorème d’intégration terme...