
Mines Maths 2 PC 2002
Questions du sujet 1. I-1. Exemples :\\ Déterminer toutes les solutions de l’équation différentielle E vérifiant les conditions C dans...
Questions du sujet 1. I-1. Exemples :\\ Déterminer toutes les solutions de l’équation différentielle E vérifiant les conditions C dans...
Questions du sujet 1. Q1 Soient $f \in P(\mathbb{R})$ et $g \in C_0(\mathbb{R})$. Montrer que l’intégrale $\int_{-\infty}^{+\infty} f(t)g(x-t)dt$ converge pour...
Questions du sujet 1. Montrer que si $f$ appartient à $C^0$ alors $T f$ aussi. 2. Montrer que pour tout...
Questions du sujet 1. Soit $z$ un réel strictement positif. Déterminer des conditions nécessaires et suffisantes sur les réels $\alpha$...
Questions du sujet 1. Montrer les inégalités suivantes :\\ \[ \ln(1 + t) \leq t, \quad \text{pour tout } t...
Questions du sujet 1. Démontrer que toute fonction $f$, qui appartient à l’ensemble $F$, est, sur l’intervalle ouvert $I =...
Questions du sujet 1. D\’emontrer que, lorsque la fonction $h$, d\’efinie sur $\mathbb{R}$, est \’egale \`a une constante r\’eelle $\alpha$...
Questions du sujet 1. I-1. Rayon de convergence :\\a. Exemples : étant donnés un réel $a$ différent de 0 $(a...
Questions du sujet 1. On note $T_1$ la variable aléatoire égale au temps écoulé entre le temps 0 et le...
Questions du sujet 1. Déterminer les points critiques de $f$. 2. Expliciter des points $(x, y) \in \mathbb{R}^2$ arbitrairement proches...