Centrale Maths 1 PSI 2008
Questions du sujet 1. I.A – Ecrire une s\’equence d’instructions permettant le calcul de $u_n$ pour $n$ donn\’e (on ne...
Questions du sujet 1. I.A – Ecrire une s\’equence d’instructions permettant le calcul de $u_n$ pour $n$ donn\’e (on ne...
Questions du sujet 1. Quel lien y a-t-il entre une trajectoire $\gamma(t)$ du système et le champ $\Phi(X)$ ? 2....
Questions du sujet 1. I.A.1) Donner l’ensemble des solutions de (F0). 2. I.A.2) Dans cette question uniquement, on prend pour...
Questions du sujet 1. I.A – Déterminer le développement en série entière de $I_0$ de la fonction $I_p(x) = \int_0^x...
Questions du sujet 1. A – Soit $h \in C$, $h \neq 0$. Justifier l’égalité $C = \operatorname{Vect}(h) \oplus \operatorname{Vect}(h)^{\perp}$...
Questions du sujet 1. On fixe $x_0>0$. Soit $\varphi(\cdot, x_0) : [0, T(x_0)[\rightarrow \mathbb{R}$ la solution maximale de $E(\lambda, x_0)$....
Questions du sujet 1. Calculer $h_0$ et $h_1$ et établir pour tout entier $n$, pour tout réel $x$, l’identité suivante...
Questions du sujet 1. Montrer, pour tout entier relatif $m$, que $u_m$ est $2\pi$-périodique, continue sur $\mathbb{R}$ et que l’on...
Questions du sujet 1. Soit $\varphi(\lambda) = \lambda^{2t}(1 – \lambda)^2$ pour $\lambda \in [0, 1]$. Calculer $\displaystyle\max_{\lambda \in [0, 1]}...
Questions du sujet 1. On considère $g : [0, +\infty[ \to \R$ définie par $g(x) = e^{-x}$. Montrer que $g$...