
Centrale Maths 1 MP 2015
Questions du sujet 1. I.A.1) Déterminer un couple $(A, \vec{b})$ dans $SO(2) \times \mathbb{R}^2$ tel que l’on ait $M(A,\vec{b}) =...
Questions du sujet 1. I.A.1) Déterminer un couple $(A, \vec{b})$ dans $SO(2) \times \mathbb{R}^2$ tel que l’on ait $M(A,\vec{b}) =...
Questions du sujet 1. I.A.1) Dans chacun des deux cas suivants, montrer que f \ast g est définie et bornée...
Questions du sujet 1. Pour tout $n$ dans $\mathbb{N}$, déterminer le degré de $T_n$, puis montrer que $(T_k )_{0\leq k\leq...
Questions du sujet 1. Soit $F$ un sous-espace vectoriel de $E$ stable par $u$. Montrer que l’orthogonal $F^\perp$ de $F$...
Questions du sujet 1. Montrer que $\mathcal{H}(U)$ est un sous-espace vectoriel de $\mathcal{C}^2(U, \mathbb{R})$. 2. Soit $f \in \mathcal{H}(U)$. Montrer...
Questions du sujet 1. Montrer \[ \Phi_{X_n}(t) = \prod_{k=1}^n \cos \left(\frac{t}{2^k}\right). \] 2. En déduire \[ \sin \left( \frac{t}{2^n} \right)...
Questions du sujet 1. I.A.1) Montrer que $f$ est définie et continue sur $[0, +\infty[$ et de classe $\mathcal{C}^2$ sur...
Questions du sujet 1. I.A.1) Justifier que la série de terme général $a_n = \frac{1}{n} – \int_n^{n-1}\frac{dt}{t}$ converge. 2. I.A.2)...
Questions du sujet 1. Justifier que la série entière $\sum_{n \geq 1} \frac{(pn)^r}{(pn)!} z^n$ a pour rayon de convergence $+\infty$....
Questions du sujet 1. Justifier que $P$ et $D$ sont des sous-espaces vectoriels de $E$. 2. Montrer que si $f...