
Mines Maths 1 MP 2010
Questions du sujet 1. 1) Montrer que les deux séries qui entrent dans la définition de g_f(z) sont convergentes pour...
Questions du sujet 1. 1) Montrer que les deux séries qui entrent dans la définition de g_f(z) sont convergentes pour...
Questions du sujet 1. Établir pour tous $m_1, m_2, \cdots, m_n$ éléments de $M_{n,1}(\mathbb{R})$, l’inégalité $$ |\,\mathrm{per}(m_1, \cdots, m_n)| \leq...
Questions du sujet 1. Calculer, pour toute valeur de l’entier strictement positif $n$, l’intégrale $I_n$. 2. Déterminer les constantes $A$,...
Questions du sujet 1. Soit $f \in C^1_K(\mathbb{R}^2, \mathbb{R})$. Montrer que si $f$ est radiale, il existe $F \in C^1_K(\mathbb{R}^+;...
Questions du sujet 1. D\’emontrer que les fonctions complexes $f$ et $g_n$, $n \in \mathbb{N}$, d\’efinies dans le plan $\mathbb{R}^2$...
Questions du sujet 1. D\’emontrer qu’il existe un plus grand r\’eel $p$ et un plus petit r\’eel $q$ tels que,...
Questions du sujet 1. Montrer que la matrice $A = I_2$ admet une infinité de racines carrées (on pourra utiliser...
Questions du sujet 1. I.A – Montrer que la fonction $t \rightarrow e^{-t} t^{x-1}$ est intégrable sur $]0, +\infty[$ si,...
Questions du sujet 1. I.A – Image et noyau de $c$\\ Déterminer une base du noyau et une base de...
Questions du sujet 1. I.A.1) Montrer que $p$ est une application linéaire. Déterminer la matrice de $p$ relativement aux bases...