
Centrale Maths 1 PC 2014
Questions du sujet 1. I.A – Soit $A$ une matrice carrée réelle de taille $n$ et $b$ un élément de...
Questions du sujet 1. I.A – Soit $A$ une matrice carrée réelle de taille $n$ et $b$ un élément de...
Questions du sujet 1. I.A.1) Pour un polynôme non nul $P \in \mathbb{R}_n[X]$, exprimer $\deg(\tau(P))$ et $cd(\tau(P))$ à l’aide de...
Questions du sujet 1. I.A.1)\newline a) Étudier les variations de $\varphi$.\newline b) Tracer la représentation graphique de $\varphi$.\newline c) Montrer...
Questions du sujet 1. Montrer que D(d_1, \cdots, d_n) = V(d_1, \cdots, d_n). 2. Montrer que le Wronskien des fonctions...
Questions du sujet 1. I.A.1) Justifier que $\mathcal{X}_n$ est un ensemble fini et déterminer son cardinal. 2. I.A.2) Démontrer que...
Questions du sujet 1. Justifier que $\varphi$ appartient à $E_{cpm}$ et calculer sa transformée de Fourier $\mathcal{F}(\varphi)$. 2. I.B.1) Justifier...
Questions du sujet 1. I.A.1) Vérifier qu’une suite périodique est bornée. 2. I.A.2) Que peut-on dire des suites 1-périodiques ?...
Questions du sujet 1. I.A.1) a) Montrer que pour tout $(x, y) \in \Omega$, l’ouvert $\Omega$ contient un sous-ensemble de...
Questions du sujet 1. I.A – Soit $n \in \mathbb{N}^*$. Déterminer le module et un argument de $\left(1 + \dfrac{z}{n}\right)^n$...
Questions du sujet 1. Soit $f \in C^0_\#$, démontrer que la suite des $c_n(f)$ où $n \in \mathbb{Z}$, est bornée.}...