
CCINP Maths 1 PC 2009
Questions du sujet 1. I.1 Montrer que si $S$ appartient à $\mathcal{S}^+_n(\mathbb{R})$, on a pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $tMSM$...
Questions du sujet 1. I.1 Montrer que si $S$ appartient à $\mathcal{S}^+_n(\mathbb{R})$, on a pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $tMSM$...
Questions du sujet 1. I.1 Montrer que si $\lambda_1, \ldots, \lambda_n$ sont des réels positifs, distincts ou non, il existe...
Questions du sujet 1. I.1 Déterminer suivant les valeurs de $a$, le rang de la matrice $A(a) – \lambda I_3$....
Questions du sujet 1. I.1 Soit la matrice $P$ donnée par : $P = \begin{pmatrix} 1 & 2 \\ 0...
Questions du sujet 1. I.1 Soit $A$ la matrice de $M_5(\mathbb{R})$ donnée par : \[ A=\begin{pmatrix} 2 & 1 &...
Questions du sujet 1. I.1.1/ Expliciter $F(x)$, si $f$ est définie sur $\mathbb{R}$ par $f(t)=1$. 2. I.1.2/ Expliciter $F(x)$, si...
Questions du sujet 1. I.1/ Montrer que $f$ appartient à $E_1$. 2. I.2/ Montrer que, pour tout $x\in\mathbb{R}_+^*$, la fonction...
Questions du sujet 1. I.1. Calculer la matrice $M^2$. 2. I.2. Exprimer la matrice $M^2 + M$ en fonction des...
Questions du sujet 1. I.1. Soient $x = (a, b)$, $y = (c, d)$ deux vecteurs de $\mathbb{C}^2$ et $\lambda,\mu$...
Questions du sujet 1. I.A.1) Enoncer pr\’ecis\’ement le th\’eor\`eme de Cauchy-Lipschitz adapt\’e \`a l’\’equation $(E_\lambda)$ et exploiter l’unicit\’e pour prouver...