
Mines Maths 1 MP 2012
Questions du sujet 1. Montrer que si $n \in \mathbb{N}$, l’application $u_n : R_n[X] \to R_n[X]$ donnée par la formule...
Questions du sujet 1. Montrer que si $n \in \mathbb{N}$, l’application $u_n : R_n[X] \to R_n[X]$ donnée par la formule...
Questions du sujet 1. En observant que $V(f)$ et $-V^*(f)$ sont des primitives de $f$, montrer que pour tous $f,...
Questions du sujet 1. Montrer que la matrice $H_n$ est symétrique réelle et définie positive. On pourra s’aider du calcul...
Questions du sujet 1. Montrer qu’une matrice symétrique $S \in S_n(\mathbb{R})$ est définie positive si et seulement si son spectre...
Questions du sujet 1. Montrer que pour toute base orthonormée $(e_1,e_2,\ldots,e_n)$ de $\mathbb{R}^n$, on a la formule $\mathrm{tr}(A) = \sum_{i=1}^n...
Questions du sujet 1. Justifier que pour tout $f \in L$, $\hat{f}$ est bien définie et continue sur $\mathbb{R}$.} 2....
Questions du sujet 1. I.A – Soit $A$ une matrice carrée réelle de taille $n$ et $b$ un élément de...
Questions du sujet 1. I.A.1)\newline a) Étudier les variations de $\varphi$.\newline b) Tracer la représentation graphique de $\varphi$.\newline c) Montrer...
Questions du sujet 1. I.A.1) Soient $F$ et $G$ deux sous-espaces supplémentaires de $E$ et $s$ la symétrie par rapport...
Questions du sujet 1. I.A.1) Montrer que $A \in SO(2)$ si et seulement si il existe un réel $t$ tel...