
CCINP Maths 1 PC 2017
Questions du sujet 1. Q1. Reconnaître la loi de $Y$ et préciser en particulier $\mathbb{P}(Y = n)$ pour $n \in...
Questions du sujet 1. Q1. Reconnaître la loi de $Y$ et préciser en particulier $\mathbb{P}(Y = n)$ pour $n \in...
Questions du sujet 1. 1.a) D\’eterminer l’expression de $p_{0,2}(t)$, $p_{1,2}(t)$ et $p_{2,2}(t)$ en fonction de $t$. 2. 1.b) D\’eterminer les...
Questions du sujet 1. Q1. On note $\Delta$ l’endomorphisme de $\mathbb{R}[X]$ défini par :\\ $\forall P \in \mathbb{R}[X], \Delta(P) =...
Questions du sujet 1. Montrer que la fonction $f$ est bien définie sur $\mathbb{R}$. 2. Pour tout $p \in \mathbb{N}$,...
Questions du sujet 1. Soit $t$ un réel et soit $A = \begin{pmatrix} 0 & t \\ – t &...
Questions du sujet 1. I.1 Qu’affirme le théorème de Cauchy-Lipschitz linéaire quant à la structure de l’ensemble des solutions de...
Questions du sujet 1. I.1 Vérifier la formule donnant $L(f)$ pour $f$ définie sur $[0, 1]$ par $f (t) =...
Questions du sujet 1. I.1 Soient $V$ un vecteur non nul de $\mathcal{M}_{n,1}(\mathbb{K})$ et $\lambda$ un élément de $\mathbb{K}$. Montrer...
Questions du sujet 1. Montrer que, pour tout \( M \) dans \( \mathcal{M}_n(\mathbb{R}) \) et pour tous \( P...
Questions du sujet 1. Soit $F$ un sous-espace vectoriel de $E$ stable par $u$. Montrer que l’orthogonal $F^\perp$ de $F$...