
Centrale Maths 1 MP 2017
Questions du sujet 1. I.A.1) Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont deux sous-espaces vectoriels supplémentaires orthogonaux dans $\mathcal{M}_n(\mathbb{R})$ et préciser...
Questions du sujet 1. I.A.1) Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont deux sous-espaces vectoriels supplémentaires orthogonaux dans $\mathcal{M}_n(\mathbb{R})$ et préciser...
Questions du sujet 1. I.A.1) Déterminer un couple $(A, \vec{b})$ dans $SO(2) \times \mathbb{R}^2$ tel que l’on ait $M(A,\vec{b}) =...
Questions du sujet 1. Montrer l’inégalité d’interpolation (I.2) avec $C = 1$. 2. Soit $C \in ]0, 1[$. À l’aide...
Questions du sujet 1. Soit $F$ un sous-espace vectoriel de $E$ stable par $u$. Montrer que l’orthogonal $F^\perp$ de $F$...
Questions du sujet 1. Justifier que $P$ et $D$ sont des sous-espaces vectoriels de $E$. 2. Montrer que si $f...
Questions du sujet 1. Soit $r$ et $R$ des nombres réels strictement positifs, $\alpha$ et $\theta$ des nombres réels. On...
Questions du sujet 1. Justifier qu’il existe un unique endomorphisme $u$ de $\mathbb{R}^n$ tel que pour tous $x, y$ dans...
Questions du sujet 1. Montrer que si $n \in \mathbb{N}$, l’application $u_n : R_n[X] \to R_n[X]$ donnée par la formule...
Questions du sujet 1. Montrer que la matrice $H_n$ est symétrique réelle et définie positive. On pourra s’aider du calcul...
Questions du sujet 1. Montrer que pour toute base orthonormée $(e_1,e_2,\ldots,e_n)$ de $\mathbb{R}^n$, on a la formule $\mathrm{tr}(A) = \sum_{i=1}^n...