CCINP Maths 1 PSI 2013
Questions du sujet 1. I.1.1 Montrer que $f$ est une fonction impaire dérivable sur $\mathbb{R}$. 2. I.1.2 Montrer que $f$...
Questions du sujet 1. I.1.1 Montrer que $f$ est une fonction impaire dérivable sur $\mathbb{R}$. 2. I.1.2 Montrer que $f$...
Questions du sujet 1. I.1 Vérifier la formule donnant $L(f)$ pour $f$ définie sur $[0, 1]$ par $f (t) =...
Questions du sujet 1. I.1 Soient $V$ un vecteur non nul de $\mathcal{M}_{n,1}(\mathbb{K})$ et $\lambda$ un élément de $\mathbb{K}$. Montrer...
Questions du sujet 1. I.1.1 \textbf{Enoncer les propriet\’ es de la sph\` ere unit\’ e $\Omega_n$ ainsi que celles de...
Questions du sujet 1. I.1.1 Montrer que, pour tout entier $n$, la restriction, notée $\Phi_n$ de $\Phi$ à $\mathbb{R}_n[X]$, définit...
Questions du sujet 1. L.1\quad Dessiner les ensembles $T$ et $D$ sur un même dessin. En notant $x$ et $y$...
Questions du sujet 1. Soient $A$ et $B$ deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que $\forall (X, Y) \in (\mathcal{M}_{n,1}(\mathbb{R}))^2, X^\top...
Questions du sujet 1. Montrer que, pour tout \( M \) dans \( \mathcal{M}_n(\mathbb{R}) \) et pour tous \( P...
Questions du sujet 1. Vérifier que $\delta$ est un élément neutre pour la loi $\ast$. 2. Justifier que, pour tout...
Questions du sujet 1. Montrer que $M$ et $M^{>}$ ont même spectre. 2. Montrer que $M^{>}$ est diagonalisable si et...