CCINP Maths 1 PC 2014
Questions du sujet 1. I.1. Montrer que $a = -(z_1 + z_2)$ et $b = z_1 z_2$. 2. I.2.a. Vérifier...
Questions du sujet 1. I.1. Montrer que $a = -(z_1 + z_2)$ et $b = z_1 z_2$. 2. I.2.a. Vérifier...
Questions du sujet 1. I – 1.1.\\ Justifier l’existence de l’intégrale $K = \int_{0}^{+\infty} \frac{1-\cos(t)}{t^2}\,dt$. 2. I – 1.2.\\ Pour...
Questions du sujet 1. Justifier la nécessité de changer le matériau de la bande de captage du pantographe plutôt que...
Questions du sujet 1. Montrer que la suite $(I_m)_{m\in\mathbb{N}}$ est décroissante. 2. Montrer que pour tout $m \in \mathbb{N}$ :\\...
Questions du sujet 1. Montrer que : $\forall t \in \mathbb{R}_+, |\sin(t)| \leq t$. 2. Montrer que les fonctions $F,...
Questions du sujet 1. Q1. On note $\Delta$ l’endomorphisme de $\mathbb{R}[X]$ défini par :\\ $\forall P \in \mathbb{R}[X], \Delta(P) =...
Questions du sujet 1. Montrer que la fonction $f$ est bien définie sur $\mathbb{R}$. 2. Pour tout $p \in \mathbb{N}$,...
Questions du sujet 1. Soit $t$ un réel et soit $A = \begin{pmatrix} 0 & t \\ – t &...
Questions du sujet 1. I.1 Qu’affirme le théorème de Cauchy-Lipschitz linéaire quant à la structure de l’ensemble des solutions de...
Questions du sujet 1. Q1. Montrer que 1 est valeur propre de $A(\alpha, \beta)$ et determiner le sous-espace propre associé....