
Mines Maths 2 PC 2016
Questions du sujet 1. Montrer que D(d_1, \cdots, d_n) = V(d_1, \cdots, d_n). 2. Montrer que le Wronskien des fonctions...
Questions du sujet 1. Montrer que D(d_1, \cdots, d_n) = V(d_1, \cdots, d_n). 2. Montrer que le Wronskien des fonctions...
Questions du sujet 1. Déterminer les coefficients de Fourier de $H_r$ et $H_r$ en fonction de $r$ et des $a_k$.}...
Questions du sujet 1. Calculer $F_2(\lambda)$, $L_2(\lambda)$. 2. Exhiber une infinité de matrices $J$ qui satisfassent c). 3. Montrer que...
Questions du sujet 1. Soient $A$ et $B \in M_n$, montrer que $\mathrm{tr}(AB) = \mathrm{tr}(BA)$. 2. Montrer que la trace...
Questions du sujet 1. Montrer que $h u = -u$ et que $h v = v$ dès que $v$ est...
Questions du sujet 1. En utilisant la formule des probabilités totales, montrer que $P(S_{k+1} = 1)$ s’écrit comme une combinaison...
Questions du sujet 1. Montrer que, pour tout $x \in ]-1, 1[$, $$ \frac{1}{\sqrt{1 – x}} = \sum_{k=0}^{\infty} \binom{2k}{k} \frac{1}{4^k}...
Questions du sujet 1. Déterminer dans le quart de plan $x \geq 0, y \leq 0$, une équation polaire de...
Questions du sujet 1. Déterminer dans le quart de plan $x \geq 0, y \leq 0$, une équation polaire de...
Questions du sujet 1. Démontrer qu’une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est orthodiagonalisable si et seulement si elle est symétrique. 2....