
Mines Maths 2 PC 2006
Questions du sujet 1. Montrer que si $A$ est positive, alors pour toute matrice réelle $M \in \mathcal{M}_{n,p}$, la matrice...
Questions du sujet 1. Montrer que si $A$ est positive, alors pour toute matrice réelle $M \in \mathcal{M}_{n,p}$, la matrice...
Questions du sujet 1. A Soit $E = \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$ et $F = \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$. Montrer que $F$ est un...
Questions du sujet 1. D\’emontrer que la suite des matrices $(U^n)_{n\in\mathbb{N}}$, o\`u $U^n$ est la matrice $U$ \’elev\’ee \`a la...
Questions du sujet 1. I-1. Exemples :\\ Déterminer toutes les solutions de l’équation différentielle E vérifiant les conditions C dans...
Questions du sujet 1. Soient $\lambda$ un réel dans l’intervalle $]0, 1[$, et $a$ et $b$ deux réels positifs. Montrer...
Questions du sujet 1. Montrer que si $f$ appartient à $C^0$ alors $T f$ aussi. 2. Montrer que pour tout...
Questions du sujet 1. Montrer que $kMNk \leq kMk\ kNk$ pour toutes les matrices $M \in M_{n,r}(K)$ et $N \in...
Questions du sujet 1. Montrer les inégalités suivantes :\\ \[ \ln(1 + t) \leq t, \quad \text{pour tout } t...
Questions du sujet 1. Rappeler à quel type d’isomérie s’apparentent des espèces dont la structure diffère par la rotation autour...
Questions du sujet 1. Donner l’unité des grandeurs $\dot{W}$, $\dot{Q}$ et $D_m$ mentionnées sur la figure 1. 2. Le système...