
Centrale Maths 2 PC 2005
Questions du sujet 1. 1) On se propose de démontrer le résultat suivant : « deux matrices de semblables dans...
Questions du sujet 1. 1) On se propose de démontrer le résultat suivant : « deux matrices de semblables dans...
Questions du sujet 1. I.A.1) Cas $n = 2$.\\ Résoudre par cette méthode le système $(S_2)$.\\ On remarquera en particulier...
Questions du sujet 1. I.A.1) Soient $A$ et $B$ les deux matrices d’un même endomorphisme de $E$ rapporté à deux...
Questions du sujet 1. Soit $f \in C^0_\#,$ démontrer que la suite des $c_n(f)$ où $n \in \mathbb{Z},$ est bornée....
Questions du sujet 1. Soient $t_1$ et $t_2$ appartenant à $\mathcal{S}_n$, démontrer que $t_1+t_2 \in \mathcal{S}_n$. 2. Montrer que $t(\cdot):...
Questions du sujet 1. On fixe $x_0 > 0$. Soit $\varphi(\cdot, x_0) : [0, T(x_0)[ \to \mathbb{R}$ la solution maximale...
Questions du sujet 1. Soit $n \in \mathbb{N}^*$ un entier non nul. Montrer que l’application $N$ de $M_n(\mathbb{R})$ dans $\mathbb{R}$...
Questions du sujet 1. Calculer $h_0$ et $h_1$ et établir pour tout entier $n$, pour tout réel $x$, l’identité suivante...
Questions du sujet 1. Montrer, pour tout entier relatif $m$, que $u_m$ est $2\pi$-périodique, continue sur $\mathbb{R}$ et que l’on...
Questions du sujet 1. Soit $\varphi(\lambda) = \lambda^{2t}(1 – \lambda)^2$ pour $\lambda \in [0, 1]$. Calculer $\max_{\lambda \in [0, 1]}...